

page 1 of 18©2023 Approov Limited. All rights reserved. Version 3.2

W H I T E P A P E R

page 1 of 18

Contents

Introduction 2
Man in the Middle Attacks 3
TLS and Encrypted Traffic 3
The Chain of Trust 4
Breaking Trust - Trust Store Poisoning 5
Breaking Trust - CA Breach 6
The Benefits of Pinning 6
Public Key Pinning versus Certificate Pinning 8
Implementing Pinning 9
The Mobile Certificate Pinning Configurator 10
The Bad News - Pinning Can Be Bypassed in the Client 11
Barclays Bank UK Incident 11
Pinning Bypass by App Repackaging 12
Pinning Bypass Using a Hooking Framework 12
Certificate Transparency 13
Dynamic Pinning Provides Easy Administration and Elimination of Operational Risks 14
The Final Piece in the Puzzle - How to Block Client-Side MitM Attacks 14
Approov: Complete MitM Protection with Assured Service Continuity 15
Conclusion 16
Appendix 1 - The Approov Solution for Mobile App and API Security 17

1. Account Administration 17
2. App Launches and Requests Attestation 18
3. Integrity Assessment 18
4. Token/Secrets Included in API Request 18
5. Backend Verification 18

How to Prevent MitM Attacks between
Mobile Apps and APIs

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 2 of 18©2023 Approov Limited. All rights reserved. Version 3.2

The massive deployment of mobile apps is presenting new attack surfaces to bad actors. The channel
between apps and APIs presents a rich target for hackers via Man-in-the-Middle (MitM) attacks. This white
paper explains why MitM attacks are a particular issue for mobile apps and explains why using Transport
Level Security (TLS) alone is not sufficient to stop them. After an in-depth analysis of the problem we will look
at how certificate pinning can help thwart mobile MitM attacks, and the risks involved in setting pins statically
within an app. We also look at the advantages of being able to set the pins dynamically, and the steps you
should take to protect your organization’s data and revenue from these types of exploits.

Introduction

Mobile app usage has been increasing year on year and that seems unlikely to change. As shown in Figure 1, direct
revenue derived from mobile apps is also showing impressive growth. Most consumer facing enterprises now have a
mobile app since it is the preferred touchpoint for their customers and even if those apps don’t generate revenue directly
for the company, trust in the mobile app platform is vital for brand reputation.

Figure 1: Worldwide Mobile App Revenue Forecast

(Image source: Statista)

Unfortunately the deployment of mobile apps and the proliferation of APIs that serve them present some new secu-
rity challenges, offering novel opportunities to bad actors to access sensitive data and derail your business. This is
because mobile apps are downloaded to unmanaged devices and there are a battery of available tools to allow hackers
to dissect and manipulate them at their leisure.

https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 3 of 18©2023 Approov Limited. All rights reserved. Version 3.2

The API channel between the apps and backend services is one of the 5 defined attack surfaces in the mobile ecosys-
tem.

Attacking the API channel between mobile apps and their backend servers through Man-in-the-Middle (MitM) attacks
are a growing threat for mobile users. The ability to intercept and manipulate communications between mobile
devices and servers is a particular problem in mobile because of the explosive growth in mobile app usage, and is now
becoming a common attack vector. It is an issue that has been known for some time but in spite of this, many enter-
prises are not clear on effective and efficient ways to combat these attacks. This paper is intended to help address this
issue and help mobile-first enterprises eliminate this threat.

Man in the Middle Attacks

Man-in-the-middle attacks occur when an attacker intercepts or manipulates mobile device communications to gain
access to sensitive information. The bottom line is that they give attackers the ability to see any communications,
modify messages using the channel, steal login details or certificates from encrypted traffic, intercept sensitive com-
mercial/personal data, or even easily launch a denial of service attack against the service being accessed via a mobile
app.

Figure 2: A Man-in-the-Middle Attack

Image source: Approov

TLS and Encrypted Traffic

You might be wondering about the fact that API traffic is normally encrypted using TLS (Transport Level Security).
This is now ubiquitous and typically enforced by the mobile platforms themselves. TLS uses PKI (Public Key Infra-
structure) and trusted Certificate Authorities to ensure a mobile app can verify it is communicating with a legitimate
backend server. However, there are still ways that a MitM can intercept traffic in the channel so that the mobile
app communicates with the MitM actor over an encrypted channel thinking that it’s actually the backend server. In
this way the MitM can see all the traffic, potentially modify the traffic, and then transmit it onward, again over an
encrypted channel to the backend service. Let’s look at how TLS is supposed to work and how it can be manipulated.

https://www.cyberdefensemagazine.com/the-mobile-attack-pyramid/

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 4 of 18©2023 Approov Limited. All rights reserved. Version 3.2

When a communication is made from the app to the backend service, the certificate issued for your server and asso-
ciated with a particular domain name, forms part of an overall trust chain to prove its legitimacy. During the TLS nego-
tiation a chain of digital certificates are presented and are verified by the client to prove the legitimacy of the server.
The certificates form a trust chain that ultimately needs to lead to a root Certificate Authority (CA) certificate. The trust
anchor point is established via the pool of root certificates which are pre-installed (and subsequently updated) on the
mobile device itself. A chain of trust from a leaf server certificate is only accepted if the chain leads to one of those root
certificates.

The Chain of Trust

Figure 3: The Chain of Trust

Image source: Approov

In order to be issued with a valid certificate for a particular domain you need to prove to the certificate authority and
prove to them that you actually own or control this domain. This is typically done by setting a specific record on the
Domain Name System (DNS) record for the domain or, in some cases, placing a specific file token on a web server. For
some types of certificate, a more in-depth process requiring phone verification may be employed. If ownership is proven,
then the CA will use the private key corresponding to their certificate to sign your certificate. This forms the trust chain
that ultimately proves that you own the domain. This allows the certificate to be used by a server associated with the
domain and for it to be recognized as valid by TLS. In the general case there may be one or more intermediate certifi-
cates in the chain between the leaf certificate issued for a specific domain and the root certificate held in the trust store
of a device.

So how is a MitM attack executed for a TLS encrypted channel requiring a verified trust chain in order to allow the con-
nection to be established?

In general there are two approaches. Firstly, there’s a variant where the MitM attacker is in the channel and has no

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 5 of 18©2023 Approov Limited. All rights reserved. Version 3.2

access to the mobile app. Secondly, there’s a variant where the MitM attacker is also controlling the app as well and the
environment that the app is running in.

Let’s look in more detail at two common ways an attacker can break the chain of trust and execute a MitM attack.

Breaking Trust - Trust Store Poisoning

Figure 4: Trust Store Poisoning

(Image source: Approov)

If you have access to the device, you can use a MitM tool, of which there are many, such as mitmproxy. In such cases
you’ll be analyzing traffic from a mobile app and you’re also controlling the device. Tools such as mitmproxy create a
certificate that is installed onto the end user device. Rather than being a certificate from a root certificate authority, it
is actually a self-signed certificate that the tool has itself created (see Figure 4). You install it into the trust store on the
device and then when the tool intercepts traffic it will, on the fly, also create leaf certificates for the particular domains
that you are visiting, which have a chain of trust back to the self-signed certificate authority that is installed on the
device. Thus the trust chain will be verified and the traffic is successfully redirected to the MitM rather than going to the
real server. From there the MitM will then connect to the real server, relaying the traffic but with the proxy in the middle
able to observe all the traffic. The proxy can potentially modify the traffic in flight. Moreover, it can also record and
potentially replay the traffic later.

In recent years various protections have been added to mobile platforms to actually make it very difficult for an end user
to be tricked into installing one of these self-signed certificates on your device.

The attacker really needs to control the end device, and may require it to be rooted or jailbroken, in order to install one of
these certificates in a way that will be trusted by most apps. This is typically a technique used for traffic analysis when
the attacker controls the end user device, and wishes to perform a MitM to analyze an API protocol.

https://mitmproxy.org/

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 6 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Breaking Trust - CA Breach

Figure 5: CA Breach or Bad Issuance

(Image source: Approov)

Another way that the trust chain can be broken is if there is a breach of a certificate authority or a bad issuance of a
certificate.

One of the weaknesses of PKI architecture is manifested in the large number of root certificates that are installed on
the device. There could be a data breach at any one of the certificate authorities or, more likely, a failure or circumven-
tion in the process that’s used to prove that you are actually the owner of a domain. This would allow an attacker to be
issued with a valid certificate for your domain. It only requires a breach at any one single certificate authority for this to
be a threat.

Alternatively there could be a breach within your own systems. If an attacker is able to control your DNS records or web
content then they could pass the verification to enable a valid certificate to be issued by a certificate authority to them.

It is then possible to utilize DNS poisoning, especially on public WiFi, for an attacker to redirect requests to their servers
with the bogus certificate. As far as the app is concerned it would readily connect with TLS since the certificate being
served would look completely legitimate. The attacker could then perform full interception of end-user traffic (see
Figure 5).

The Benefits of Pinning

Certificate pinning enables developers to protect mobile apps from the MitM attacks described. However, despite its
effectiveness, it isn’t widely used except in some highly security conscious sectors such as financial services.

In Figure 6 you can see the relationship between the device on the left-hand side and the back-end service on the right.
As we have seen, the server provides a particular certificate and then during the negotiation a trusted chain is estab-
lished from that leaf certificate to some certificate authority. The certificate authority needs to be trusted and this is
verified by checking the device’s trust store. This means that the app is relying on information in the trust store on the
device, but it doesn’t entirely control this, especially if the app is running in a compromised environment.

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 7 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Figure 6: Certificate Pinning

(Image source: Approov)

Pinning adds an additional check by adding a pin of a certificate inside the mobile app itself. In addition to all the stan-
dard verification which is performed on the certificate chain during the negotiation, a check is made that a certificate
corresponds to the expected pinned value. Typically, pinning is done against a leaf certificate. However, pinning to a
root or intermediate certificate is also possible, as discussed in the next section.

Certificate pinning allows mobile applications to restrict communication only to servers with a valid certificate match-
ing the expected pin value. The connection is terminated immediately if communication is attempted with any server
that doesn’t match this “expected” value.

The pin is usually not a copy of the entire certificate. In fact it is typically a hash of the certificate, or some key attri-
butes from the certificate. The app is shipped including the pin and will only connect if it sees the expected certificate.

In this way, you’re not just relying on the trust chain: The app is saying ‘I want to see this particular certificate which I
know is my certificate, anyone else who generates a certificate for my domain is not going to get through’.

One reason this is easier to implement on mobile apps is that there is a secure channel through the app store for
releasing the app code including the configuration. There have been attempts in the past to have certificate pinning on
the web, for example HTTP Public Key Pinning (HPKP), but this suffers from multiple problems and is no longer used.
One key problem was that the only channel to receive the information for the pins was the channel that needed to be
pinned, and this led to potential for attacks. In the mobile context the pins are included in the app code, which are deliv-
ered by a different, secured, route.

https://en.wikipedia.org/wiki/HTTP_Public_Key_Pinning

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 8 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Public Key Pinning versus Certificate Pinning

Figure 7: Pinning Options

(Image source: Approov)

The term “certificate pinning” is employed here, although technically what is usually used is “public key pinning”.

Certificates have many fields, including the signature of the certificate authority as created by the next authority up in
the chain. A one-way cryptographic hash function takes a selection of the content and generates a derived value which
cannot be feasibly reversed. It is possible to produce a hash of all the certificate content and check that a specific
certificate is being presented by verifying that.

However, the approach typically employed in mobile apps (and supported by development frameworks) takes the
algorithm and public key information and hashes only these elements. This is termed Subject Public Key Information
(SPKI) hashing. This produces a hashed pin value with the main advantage that it is not a specific certificate that is
being pinned, but its public key. This means that if you renew the certificate, as long as the public/private keypair is
retained, then the pin won’t actually change. Thus it is possible to keep renewing certificates without constantly having
to change pins in mobile apps.

If you are pinning then you do have a choice of what to pin. Please refer to Figure 7.

One option is that you can pin to a certificate authority or the root certificate. This says ‘I will only accept certificates
which have come from this particular certificate authority, signed by this particular root certificate’. That has the
advantage that it’s much less likely to change because these certificates are much longer lived. What it’s actually doing
is restricting connections to be from a particular certificate authority, not necessarily tied to a particular domain. In
security terms it’s not quite as strong as pinning to a leaf certificate but this may be an acceptable trade-off depending
on your circumstances. Of course, you may still need to change the pin if you obtain future certificates from a different
authority, or they change the root certificate they are using in a future certificate issuance to you.

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 9 of 18©2023 Approov Limited. All rights reserved. Version 3.2

You can pin to an intermediate certificate; some larger organizations have intermediate certificates internally from
which they sign their own server certificates. Putting in an intermediate means that you’re pinning something which
may be longer lived than a leaf certificate.

Ultimately you may choose to pin to the leaf certificate. This is definitely the most secure because it ensures the mobile
app only accepts your certificate, with your private key, issued for your domain. Good practice says that you should
rotate your leaf certificates regularly. It is important to ensure that the same public/private key is retained to avoid need-
ing to change the pins.

You also have to be aware that if you are dealing with individual servers, sometimes in particular infrastructures there
might be different certificates for different geographic locations. You need to be sure that they are all using the same
key pair or otherwise you need to include all those pins in your mobile app, which may then be harder to manage.

It is also recommended practice to include at least one backup pin for a certificate that is not currently in service. In an
emergency you can then use one of these certificates that will immediately match the pinning you have in place.

Implementing Pinning

 Figure 8: Pinning on Android and iOS

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 10 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Historically, certificate pinning has been challenging to
implement and highly reliant on the networking stack in
use. DataTheorem’s TrustKit has been a useful imple-
mentation library. However, Google and Apple have
recently enhanced their platforms to simplify pinning fur-
ther, removing any dependency on the network stack and
allowing pinning via configuration across a wide range of
networking stacks.

Google has supported pinning configuration since
Android 7. Developers simply define pins in the network
security configuration file’s particular XML syntax. In
Figure 8 (top), you can see the sort of syntax you need
to use. With this in place, you don’t need to change the
code of the app to specify the particular domain or
domains that you want to pin against. This creates the
list of pins to use. It doesn’t specify where in the chain
those pins are and if a particular hash is present any-
where in the chain, it is considered to be a good connec-
tion as long as it passes all the other TLS checks.

Apple has lately followed suit and added NSPinnedDo-
mains support with iOS 14. Of course iOS users tend to
upgrade much more frequently than Android so that rep-
resents quite a high percentage of the user base. Devel-
opers may add pins by adding them in the Info.plist
file for the app in the correct format. It’s a completely
different XML syntax to Android but essentially doing the
same thing: you specify pins for particular domains (See
bottom of Figure 8).

The Mobile Certificate Pinning
Configurator

If you want to get started with certificate pinning,
this free Pinning Generator Tool makes it simple to
generate and maintain pinning configurations for
mobile apps, ensuring that they are kept up to date
on Android and iOS.

We made this tool available to the community in
order to simplify the process of pinning in mobile
apps and take as much of the guesswork out of
the process. The tool is easy to use and generates
exactly the information you need to cut and paste
for both Android and iOS.

However, getting the pin information is quite cumbersome. It’s really not very user friendly and you have to do this for
every single pin that you want to include for each domain. As well as being laborious, it doesn’t really help you with the
process of actually generating the exact format for the XML file. There are also complications with converting between
the various different formats that you might have certificates in. You might need to get a certificate and then change
between different types of formats.

So even though there is now some solid platform support, the configuration part is tricky, especially if you’re not famil-
iar with PKI and certificate management. The majority of the setup is based on issuing numerous complex OpenSSL
commands and managing certificate files in various formats.

Approov has made available to the community a tool to take the hard work out of generating and maintaining pinning
configurations for mobile apps (See box).

https://github.com/datatheorem/TrustKit
https://developer.android.com/training/articles/security-config#CertificatePinning
https://developer.android.com/training/articles/security-config#CertificatePinning
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nspinneddomains?language=objc
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nspinneddomains?language=objc
https://approov.io/tools/static-pinning/

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 11 of 18©2023 Approov Limited. All rights reserved. Version 3.2

The principal operational risk here is that if the pins no longer match your real endpoint then you have a problem
because your app no longer works. You can no longer communicate with your servers which effectively means your app
is down. This risk is the reason that some DevOps teams are reluctant to implement pinning.

You can get yourself out of this situation by issuing an app update with some changes to the pins. Unfortunately this
takes time and in the meantime you will have a major problem. You also can’t be absolutely sure that everyone is going
to update their app. It’s quite useful if you have some kind of messaging inside the app if there are pinning failures to
indicate that you might want to do an update but really you need to make sure this doesn’t happen at all. The thing to
avoid is that you must never pin a domain that you don’t control, so don’t pin to an API endpoint where you’re not con-
trolling the server or you’re not controlling whoever is responsible for rotating certificates, because at any point they can
change their certificate chain and your app is no longer going to work.

If you have auto renewal on certificates on the endpoint then you really want to make sure the public key is maintained
to save you having to change the pins. Of course you may, if there is some kind of breach of your private key, have to
change pins and this is why you also need a backup pin so that you can put that into service should you need to rotate
to a completely different key pair. You just need to be aware that you need to coordinate between the frontend and
backend teams to make sure that the certificates don’t change in a way that you didn’t expect.

If you are about to rotate the certificate you can do it by putting the new pin into the app some time before you’re going
to rotate, ideally many days or possibly even weeks beforehand. The new pin and the old pin will both be in the app for a
period of time.

In short, you need a well-defined process.

The Bad News - Pinning Can Be Bypassed in the Client

Pinning is very effective if you’re just looking at Man-in-the-Middle attacks where the attacker doesn’t control the end
device.

Unfortunately, certificate pinning implemented in this way does not totally prevent the threat of MitM attacks on mobile
apps. If an attacker controls the end device and they’re doing some kind of analysis on your app then there are still ways
they can bypass pinning.

There are a number of ways to bypass pinning if you have access to the client. The following sections describe two main
approaches.

Barclays Bank UK Incident
A good example of a situation where static pinning was disastrous is the 2016 Barclays Bank UK incident.
The bank’s mobile application had been pinning an obsolete intermediate certificate in the mobile application
- making transaction authentication impossible. Hundreds of thousands of consumer payment transactions
were affected due to the outage, which prevented many small and medium-sized enterprises from conducting
important transactions. As a result, many companies had to close their doors at 8:30 am on 25th November
2016 (Black Friday) and for the rest of the festive period leading to immense financial losses. In addition, it had
a significant negative impact on Barclays’ reputation and its business customers.

https://archive.cabforum.org/pipermail/public/2016-November/008989.html

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 12 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Pinning Bypass by App Repackaging

Figure 9: Pinning Bypass by App Repackaging

(Image source: Approov)

See our blog: Bypassing Certificate Pinning

The first way applies to both Android and iOS, although it is typically easier on Android. This involves repackaging the
app. On Android, Apktool can be used for this purpose, but other similar tools are available. With this you can edit the
pins, you can change the configuration, or if the pinning is implemented inside the code, then you can change the code.
Then you can rebuild the app and run the modified version of the app (See Figure 9).

How susceptible your app is to this approach depends on how hardened it is. You can’t just assume because you’ve
obfuscated your app that it will necessarily be protected against this exploit.

Pinning Bypass Using a Hooking Framework

Figure 10: Pinning Bypass by App Repackaging

(Image source: Approov)

https://github.com/httptoolkit/frida-android-unpinning/blob/main/frida-script.js

See: How to Bypass Certificate Pinning with Frida on an Android App

https://blog.approov.io/bypassing-certificate-pinning
https://ibotpeaches.github.io/Apktool/
https://github.com/httptoolkit/frida-android-unpinning/blob/main/frida-script.js
https://blog.approov.io/how-to-bypass-certificate-pinning-with-frida-on-an-android-app

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 13 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Another way of attacking and circumventing pinning is at runtime. If you have a rooted or jailbroken phone there are vari-
ous types of frameworks that allow runtime hooking of functions running inside an app to modify their behavior. Frida is
the most widely used.

One of the major use cases for these types of frameworks is to circumvent pinning and Frida has various open source
modules that you can use. If you browse Frida CodeShare, then one of the most popular modules is a universal SSL
pinning bypass. It’s an enormous script that looks at all the different ways pinning is actually implemented for different
types of networking stacks and inserts changes to the code at runtime to make sure that the pinning isn’t active.

See Figure 10 for an example of such a script. In this case a particular method inside the java class OkHttp Certificate
Pinner is modified. This replaces the code at runtime with a stub that doesn’t do anything. The way the function works
normally is that if there’s a pinning failure then it blocks or it throws an exception. So once the function is hooked out by
Frida the app’s pinning protection is disabled.

Figure 11: Blocking client-side MitM Attacks

(Image source: Approov)

There is an emerging solution that’s used widely in
browsers but less so in mobile apps. It’s called cer-
tificate transparency and it’s likely that in future years
it will become quite prominent. The idea is that every
time you issue a certificate you need to make sure that
it’s issued on a public log. This is to deal with the issue

of some kind of breach around the certificate being
issued against your domain. It doesn’t necessarily
stop a breach happening, but if you enable this partic-
ular feature then for any certificate to be valid it must
probably be in the public log.

The idea is that you can monitor this public log and
if a certificate turns up that you don’t know anything
about or it wasn’t issued by you then you can put
some mechanism in place to block communication
using that certificate. The certificate transparency
doesn’t cover how that is done, it simply provides the
transparency.

The way it works is that the public log servers provide
a Signed Certificate Timestamp (SCT) when a certif-
icate is issued which proves that the issuance of the
certificate is now public and on the logs in a way that
can’t be revoked. It’s a bit like a blockchain artefact
where you can’t revoke it after it’s been issued and
this SCT is then transmitted alongside the certificate
information as part of the protocol. This is an inter-
esting area which is implemented in iOS, but not yet
entirely available on Android. In the future this might
be a key part of the overall solution to prevent MitM
attacks.

Certificate Transparency

https://frida.re/
https://codeshare.frida.re/browse
https://square.github.io/okhttp/4.x/okhttp/okhttp3/-certificate-pinner/
https://square.github.io/okhttp/4.x/okhttp/okhttp3/-certificate-pinner/
https://developer.apple.com/documentation/bundleresources/information_property_list/nsrequirescertificatetransparency?language=objc

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 14 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Dynamic Pinning Provides Easy Administration and Elimination of Operational
Risks

To eliminate operational risks, mobile app developers need a way to pin certificates without requiring static pins.
Instead, mobile applications should have access to dynamic or live pinned certificates from an online service so they
can be updated automatically on the fly. This allows updates without having users download and install updates for
their apps every time there’s a change in security infrastructure.

Essentially, this approach allows mobile application developers to stay one step ahead of hackers by keeping up with
changes in certificate authorities’ keys over time while minimizing downtime due to misconfiguration, avoiding any
potential reputational damage among consumers that could lead them away from using your business’ mobile offering
altogether.

This would allow developers and DevOps teams to avoid further incidents like Barclays’ and improve customer expe-
rience over mobile. Certificate pinning must be implemented for all APIs that service mobile apps in industries which
handle commercially or personally sensitive data. Trust is a major factor in mobile security, and app developers need
to do everything they can to protect their customers from cyber-attacks while also maintaining trust among their users
that the mobile application has been designed with privacy and data protection as top priorities.

The Final Piece in the Puzzle - How to Block Client-Side MitM Attacks

Figure 12: Blocking client-side MitM Attacks

(Image source: Approov)

MitM attacks involving client-side manipulation are very hard to detect at the back-end. It is often impossible to distin-
guish traffic coming from a proxy or actually coming from your app. There are some ways of fingerprinting TLS to see
what type of stack is being used and this traffic may look slightly different coming from a proxy, but this is not entirely
reliable, especially if the MitM is being executed by modifying an app running in the standard mobile environment.

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 15 of 18©2023 Approov Limited. All rights reserved. Version 3.2

The only way to totally prevent pinning bypass is to deploy a solution that implements app and client attestation. Appli-
cation attestation verifies the integrity of the app and prevents anyone from modifying the app to change the pins.

Client device attestation detects any frameworks running in the client environment and detects any kind of hooking
activity intended to change the behaviour of the app in real-time.

Approov: Complete MitM Protection with Assured Service Continuity

Approov provides a solution which addresses both the service continuity risks and the threat of client-side attack.
Essentially it’s an SDK and cloud service which is used to protect the integrity of the elements between the back-end
service and the user. This includes proving the run-time integrity of the app, verifying device integrity especially in terms
of checking if a framework like Frida is running on the device, and also ensuring the integrity of the communication
channel.

Rather than this being a fixed resource file or a change to the code, the required pins are in a configuration file that can
be updated live inside the app. The Approov SDK runs inside the mobile app and that SDK is responsible for communi-
cating with a cloud service which transmits a dynamic configuration which includes the domains that your app is using
and the pins for those domains. This can be updated dynamically so there is a way that you can change the pins at will,
on the server side, and this is then sent back to individual apps that are running.

This approach completely avoids the situation of static pins in the mobile app where, due to circumstances beyond your
control, you may end up with the app not working because the pins don’t match. With dynamic pinning, you can update
the pins at any point.

Also, as part of the solution, continuous end point monitoring is performed. Any domain which is set up is pinged from
Approov servers on a regular basis, and the certificate chain is inspected to make sure it matches the pins which are
inside the app. If they change there is an immediate notification allowing you to then push out a dynamic update to your
apps.

It is essential that the dynamic update mechanism itself is well protected. Approov does not simply rely on the fact that
the communication channel used for the update itself is pinned. In fact, each individual Approov account holder has
a public/private key pair. The public key is embedded inside the app as part of the configuration of the Approov SDK.
Approov servers hold the private key and when a configuration needs to be updated, it needs to be correctly signed with
this key. An update for pins can be sent over an unpinned channel and the SDK itself will only accept this if it’s correctly
signed, verified with the public key. This proves that any update is actually coming from the Approov service. If so, then
the app will be updated with the latest pins and start working again.

Client-side MitM attacks can be blocked because you will see that certain apps are failing the Approov checks. This may
be because Frida has been detected or that the app has been modified. The Approov SDK gathers information, sending
environment measurements back to the Approov cloud service. In turn this sends very short-lived tokens back to the
app which then relays them on to back-end APIs. If the environment measurements don’t check out because the app
has been changed or there’s an instrumentation framework running, then a validly signed token is not provided. This
results in the backend API token check failing. The backend will then block further communication with the app.

One of the drawbacks of the static configuration using the platform integrated mechanism is that it is only available

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 16 of 18©2023 Approov Limited. All rights reserved. Version 3.2

from iOS 14, whereas the Approov implementation automatically adds the pinning for OS versions as old as Android 5
and iOS 10.

There is also very wide coverage across a large number of different frontend frameworks. The pinning implementation
is open source but the pins themselves are obtained dynamically from the Approov SDK. Indeed, Approov’s pinning
implementation is a useful resource if you’re looking to implement pinning on a particular framework but don’t want to
use the networking built-in mechanism.

Conclusion

MitM Attacks are a particular issue for mobile apps because the application and client environment can be manipu-
lated by bad actors. Using Transport Level Security (TLS) alone is not sufficient to stop them. Certificate pinning is an
approach which significantly reduces the attack surface but static certificate pinning can present some operational
challenges.

However, as described in this Whitepaper, it is possible to prevent MitM attacks completely in a way that is both easy to
administer and will ensure that service continuity is maintained. The following steps can be taken to achieve increasing
levels of security, ease of operation, and ultimately to achieve full protection:

• First, implementing static certificate pinning can protect against in-channel MitM attacks and presents an enhanced
level of security. Tools such as the Free Pinning Generator Tool from Approov can help make implementation
straightforward. As discussed, there is some operational overhead to be managed and care must be taken to
ensure service continuity when certificates change.

• Implementing a solution for dynamic pinning can eliminate the operational burden of managing static pinning. This
can automate the process and make operation easier and less prone to errors. Operational risks and delays associ-
ated with updating apps when certificates change are eliminated.

• Finally, in order to eliminate MitM attacks which target the application itself or the client environment, a solution
which validates both app and client environment can be deployed. Such a solution, combined with dynamic pinning
can completely eliminate the risk of any MitM attacks in the mobile channel.

These approaches are tried and tested ways of reducing the threat of MitM. Some of the most-security conscious
mobile application developers already use these techniques and with wider adoption, the threat of MitM attacks on
mobile apps can be eliminated completely.

https://approov.io/docs/latest/approov-integration-examples/mobile-app/
https://approov.io/tools/static-pinning/
https://approov.io/product/

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

page 17 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Appendix 1 - The Approov Solution for Mobile App and API Security

Approov provides a run-time shielding solution which is easy to deploy and protects your APIs and the channel between
your apps and APIs from any automated attack. There are two options for protection. It can use a cryptographically
signed and short lived “Approov token” to allow the app to provide proof that it has passed the attestation checks.
Alternatively, runtime secrets can only be supplied to an app once it has passed the attestation checks, and these can
include API keys for accessing 3rd party APIs without any need to modify the API backend at all.

IIntegration of the SDK into your mobile app is designed to be straightforward. A full set of frontend and backend Quick-
starts are available to facilitate integration with common native and cross-platform development environments.

By ensuring only an untampered genuine mobile app running in an uncompromised environment can access the API,
Approov prevents the exploitation at scale of:

• Stolen user identity credentials.

• Vulnerabilities in your apps or APIs, irrespective of whether the vulnerabilities are already known, uncovered through
testing or “zero-day”.

• Malicious business logic manipulation of the API.

• Man-in-the-Middle (MitM) middle attacks.

The following sections refer to the diagram above to show how Approov flow works in detail.

1. Account Administration

The Approov CLI (Command Line Interface) tool is downloaded to your development environment. It is used to access
and administer the Approov account provided upon sign up. The tool is also used to register new apps that are to be
released to the app stores. This is achieved by analyzing the app (in either .apk, .aab or .ipa format) and creating a
unique signature which captures all aspects of the application and is virtually impossible to access or replicate. This
unique “DNA” of the app is added to a database in the Approov cloud service for your account. No application code is
stored or uploaded to the Approov service. The particular build of the app then becomes recognized as being official.

https://approov.io/resource/quickstarts/

page 18 of 18©2023 Approov Limited. All rights reserved. Version 3.2

Contact us for a free technical consultation - our security experts will show you how
to protect your revenue and business data by deploying Approov Mobile Security
www.approov.io

WHITE PAPER: How to Prevent MitM Attacks between Mobile Apps and APIs

2. App Launches and Requests Attestation

At run-time prior to making the backend API call, the app requests attestation using the SDK. Normally this is done auto-
matically as part of the quickstart integration, which will intercept calls being made to the backend API. If this is the first
request for attestation, then this will initiate an integrity assessment process inside the SDK that requires communica-
tion with the Approov cloud service (see next section). Once completed successfully, an Approov token and/or runtime
secrets are returned to the SDK, and may be cached by it for up to 5 minutes so that subsequent uses do not require
additional network communication. However, certain events (e.g. evidence of an instrumentation framework being
attached) can trigger a completely new attestation check.

3. Integrity Assessment

The integrity check process requires the SDK and the Approov cloud service to work together. The SDK analyzes the run-
time environment of the app and the authenticity of the app that is being measured. These checks are implemented in
hardened code and communications are protected by TLS, certificate pinning and also by a secondary level of request
integrity signing. The app gathers and passes data and measurements to the Approov service. The Approov cloud
service performs analysis on the data provided by the SDK and makes a decision based on this and the security policy
criteria you set for your account. These policies are dynamic and can be updated in the cloud service at any time.

If the criteria are met then the Approov cloud service provides the short lived cryptographically signed Approov token
and any relevant runtime secrets. For Approov tokens, options are also available to use various different signing algo-
rithms, including those with asymmetric keys.

4. Token/Secrets Included in API Request

The obtained Approov token can be added by the Approov service to every backend API request as an additional header,
such as Approov-Token. It is also possible to swap in runtime secrets, that are only just obtained just-in-time, into
requests automatically to replace placeholder values shipped with the app. It is important that all communications
made by these APIs are pinned so that no Man-in-the-Middle (MitM) interception is possible that could copy Approov
tokens or runtime secrets. TLS pinning of connections is managed automatically by the Approov dynamic pinning func-
tionality.

5. Backend Verification

The customer backend API is able to check the validity of the Approov token by checking if it has been correctly signed
and has not expired. API keys that are delivered just-in-time as runtime secrets can be checked in the normal way with
no need to modify the backend API at all. Invalid requests can be quickly and easily blocked, ensuring the request is
coming from a genuine and unmodified instance of the official mobile app.

http://www.approov.io
https://approov.io/docs/latest/approov-usage-documentation/#managing-key-sets

